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Abstract

In the following we will represent the Jordan curve theorem in the form
and generality needed during the course Function theory III lectured in
the fall of 2010 at University of Helsinki. We will prove the Jordan curve
theorem in two ways, one being an elementary proof and the other using
the Brouwer fixed point theorem, which is also proven.

All proofs are done in the spirit of elementary complex analysis and
this essay is meant to be largely self-contained, although some prequi-
sites of higher complex analysis are required. References are given to the
somewhat large variety of different proofs of the theorem.

1To report misprints or errors please contact rami.luisto@helsinki.fi.
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1 Introduction

We will begin by going through some notions on the history of the theorem and
its proofs and a summary of notations, basic consepts and the goal of this essay.

1.1 The theorem

The Jordan curve theorem states the following:

Theorem 1.1 (The Jordan curve theorem, abbreviated JCT). The image of a
continuous injective mapping (i.e. an embedding)

J : S1 → R2

divides the plane into exactly two components, one of which is unbounded and
the other bounded. Moreover, both of these components have the image of the
mapping J as their boundary.

The theorem was first formulated, at least in some form, by Bernand Bolzano
(1781-1848) but it is named after the french mathematician Camille Jordan
(1838-1922), for he was the first to publish a proof for the theorem in 1887
at [Jo]. The validity of his proof was questioned by his contemporaries, but
some controversy has risen concerning whether or not the criticism was justified,
see [Hal]. First generally accepted rigorous proof was given by the american
mathematician Oswald Veblen (1880-1960) at [Ve] in 1905. Also the Dutch
mathematician Jan Brouwer (1981-1966), famous for e.g. the Brouwer fixed
point theorem, worked with the Jordan curve theorem, and managed to prove
one of its generalizations with Henri Lebesgue (1875-1941). (We will return to
this later.)

The JCT is at the same time famous and notorious for being both really
intuitive and quite nontrivial to prove rigorously. In someone elses words:

“This is the mathematical formulation of a fact that shepherds have
relied on since time immemorial!”
– Laurent Siebenmann

In fact Camille Jordan was the first, according to [DT], to notice and discuss
the nontriviality of the theorem in written form in [Jo].

Not surprisingly, the combination of being highly intuitive and lacking a
trivial proof has given rise to a horde of mathematicians creating a large amount
of proofs with quite different types of approaches. List of some of these with
references will be given at section 3.

To paint a more complete picture of the history and the structure of the
JCT, I would like to finish the historical section by saying a few words about
the generalizations of the JCT. Before going to generalizations of the JCT,
however, we note that there exists also a “strong” version of the JCT, called the
Schöenflies- or Jordan-Schöenflies theorem. This is not as such a generalization
of the JCT as a strenghtened argument. It states the following.

Theorem (The Jordan-Schöenflies theorem). Given an embedding c of the unit
sphere S1 to the plane R2, there exists a homeomorphism

f : R2 → R2
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such that f |S1 = c.

The JCT can be generalized into all dimensions n ≥ 2 in the form of the
following theorem:

Theorem (The Jordan-Brouwer theorem). The image of an embedding

f : Sn → Rn+1

divides the n+1-dimensional euclidian space into exactly two components, one of
which is unbounded and the other bounded. Moreover, both of these components
have the image of the mapping f as their boundary.

As previously mentioned, the Jordan-Brouwer theorem was first proved in
1911 by J. Brouwer and H. Lebesgue.2

One reason I wanted to mention the Jordan-Schöenflies theorem is, that
unlike the JCT it quite surprisingly cannot be generalized even into the case of
dimension 3. A famous counter-example of an embedding of S2 into R3 with
the property that the unbounded components of the complements of S2 and
its image are not homemorphic is the so-called Alexander horned sphere, first
defined by J.W. Alexander (1888-1971) in his paper [Al]3 in 1924.

1.2 Notations and basic concepts

General

We shall abbreviate the Jordan Curve Theorem in the form given in theorem
1.1 by JCT.

“Our course” or “Function theory III” and “Lecture notes” will refer, unless
otherwise specified, to the course Function Theory III lectured by Eero Saksman
at the University of Helsinki in the fall of 2010, and to the lecture notes [FT3]
used in that course.

By “Function Theory II” we refer to the course Function Theory II also
lectured by Eero Saksman at the University of Helsinki in the spring of 2010.
The contents of this course can be found from the lecture notes [FT2] used in
that course.

Topology

By a domain we will mean an open connected subset of the complex plane. We
often note a domain by Ω.

We say that a set A separates points a, b ∈ C \A, or that the points a and b
are separated by the set A if a and b lay in different components of ∁A. Please
note, that if a set A does not separate points a and b, then also none of its
subsets do. Conversly, if a set separetes two points, then also all of its supersets
not containing the said points separate them as well.

2The original proof was apparently divided to three papers, two by Brouwer and one
by Lebesgue. A single article with the proof was not written at the time, propably due a
controversy between Brouwer and Lebesgue about the definition of dimension. For further
information about the history of the proof, see [Di2]. For a proof, see example Find a good

source.
3Very illuminating descriptions of the Alexander horned sphere can be found from the

internet, and I suggest to take a look for example in Wikipedia for pretty pictures.
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Curves

Definition. By a path we mean a continuous mapping from the set [0, 1] to the
target space in question. We use the term curve as synonym for path. By a
loop we mean a continuous mapping from the unit circle to the target space in
question.

In this essay we will use the common abuse of notation, by referring by
the word “path”, “curve” or “loop” both to the mapping in question and its
image. If a danger of confusion exists, we will emphasize the meaning by using
the terms “image of the path/curve/loop γ” and “the function γ”, respectively.
When explicitly needed, we denote the image of a path γ by |γ|.

Definition. A simple arc is an embedding (i.e. an injective and continuous
mapping) of the unit interval to the complex plane.

Definition. A Jordan curve is an embedding (i.e. an injective and continuous
mapping) of the unit sphere to the complex plane. In this essay we often note
a Jordan curve by c.

We denote the closed line segment between points a and b in the plane by
−→
ab. More spesifically,

−→
ab = {tb+ (1− t)a | t ∈ [0, 1]}.

When needed, we will interpret this as the constant speed path from a to b, i.e.
as the mapping t 7→ tb+ (1− t)a. Please note that we will abuse notation also

in this context, and refer with
−→
ab both to the path and the set.

Moreover if γ is a simple arc and a, b ∈ γ, then we denote the segment of the
path γ from a to b by ãb. (Again, if we want to consider ãb as a path instead of
a set, we give it the induced parametrization of γ.)

The composition of two paths is denoted with a plus-sign. More spesifically,
if γ1 and γ2 are paths defined on the unit interval I, then

γ1 + γ2 : I → Ω, (γ1 + γ2)(t) =

{
γ1(2t), when t ∈ [0, 1

2 ]

γ2(2t− 1), when t ∈ [ 12 , 1].

The inverse of a path γ : [0, 1]→ C is the path

←−γ (t) : [0, 1]→ C, ←−γ (t) = γ(1− t).

Definitions concerning function theory

Definition. We say that a domain Ω is connected along the boundary if for any
point z0 ∈ ∂Ω there exists arbitrarily small neighbourhoods U of z0 such that
U ∩ Ω is connected.

This is a slightly different formulation of connectedness along the boundary
than is given in the lecture notes of our course, but we have proven these two
definitions to be equivalent in the exercises during our course.
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Algebraic topology

Very little algebraic topology is needed during this essay. Or so it seems. We
actually use in both our proofs results very similar to some essential results of
algebraic topology.If you are not familiar with the subject, you may disregard
the notions given here, but as I am a(n) (algebraic) topologist in my heart, I
wish to make a few remarks. One reason being that those with prequisites in
algebraic topology might acquire more insight to the events within the proof.

Also it is my firm belief that anyone interested in the studies of complex
analysis would gain considerable benefit from studying even just the basics of
homotopy theory, so I like to note every time algebraic topology is used in
disguise to advertise its usefulness. The theorems and ideas referenced below
can be found for example from [Hat].

First of all, any use of winding numbers is just talking about path homotopy
with a different name4. More spesific uses of algebraic topology occur at two
points. First being the Janizewski’s theorem (theorem 2.3) used in the elemen-
tary approach to the proof. Janizewski’s theorem can be seen as a modified
version of the so called Seifert-van Kampen theorem of homotopy theory. This
reflects to the fact that in our proof we use winding numbers.

The second direct use is (in some sense) in the proof of Brouwer fixed point
theorem (theorem 2.8). This theorem was first proved without algebraic topol-
ogy, and very fluent analytic proofs do exist for the Brouwer fixed point theorem,
but the application of algebraic topology is in some sense very natural to use
in the proof of this and ’similar’ theorems. Also the most famous proofs of the
claim (from my perspective) rely on algebraic topology. The proof in this essay
is also done via the relation of homotopic paths and their respective integrals
over analytic functions. But in this proof we have also some “higher” homotopy
theory, for what we are saying in forming the contradiction could be rephrased

to express the fact that S1 is not a deformation retract of the closed disk B
2
.

(i.e. there exists no continuous mapping from B
2
to S1 such that its restriction

to the boundary would be the identical map).

1.3 How to prove the JCT?

For our course we need and in this essay shall prove the JCT as stated in
1.1. As mentioned, there are various approaches one could take to prove this
theorem. One approach to prove the above theorem would be to prove directly
the more difficult Jordan-Schöenflies theorem mentioned earlier, for the JCT
would follow from this immidiately. We will not, however use this approach, as
the Jordan-Schöenflies theorem can be obtained from the JCT5.

I also hope that going through a proof that concentrates directly to the JCT
one might better grasp the fundamental ideas of why the theorem holds. We
shall prove the theorem with two different approaches.

4Or path homotopy is just defining winding numbers in a more general setting, as you
please.

5Namely, in [So] the Jordan-Jordan-Schöenflies theorem is proved by applying an improved
version of the Carathodory theorem concernig continuation of conformal mappings to the
boundary. This version of the theorem requires the JCT.
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The first one of them is “elementary”, which means that it is quite construc-
tive and that the algebraic topology used is very well hidden. In this proof the
basic reasons why the theorem holds are, I think, quite visible.

The other approach is less constructive and uses the Brouwer fixed point
theorem. It is a bit less constructive, and the algebraic topology is somewhat
more visible.
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2 Proof of the Jordan curve theorem

We shall begin this section with a few lemmas that are used in both of our
proofs.

Lemma 2.1. Taken any path γ : [0, 1] → C (or any loop γ : S1 → C) to the
plane, the components of the complement of γ are open and path-connected.

Proof. Unit interval and -sphere are compact and so is their respective images
under a continuous mapping. Compact sets are closed in the plane and their
complements are thus open by definition. Any component is by definition con-
nected, and as a component of an open set also open. Open connected set of
the plane are also path-connected, which gives the claim.

Lemma 2.2. Given a Jordan curve J , exactly one of the components of C \ J
is unbounded. Clearly as the set J is compact, the set C \ J has at least one
component.

b

c

R

∁B(0, R)

B(0, R)

Figure 1: The complement of a Jordan curve has at most one boundary.

Proof. As a continuous image of a compact set the set J is compact and as such
especially bounded. Thus there exists r > 0 such that

J ⊂ B(0, r) =: Br.

(See picture 1.) The connected open set ∁Br is disjoint from J and so it has to
be contained in one of the components of C \ J , say U . Now any unbounded
set, especially any unbounded component of C \ J intersects the set ∁Br and
thus also the set U . A component of C \ J cannot intersect U without being U ,
which proves the first claim.

2.1 Proof by elementary means

We shall begin this subsection with a few auxiliary results. The proofs are from
[Po].

The following result turns out to be very useful.
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Theorem 2.3. (Janiszewski’s theorem) Let A and B be two compact subsets of
the complex plane C and a, b ∈ C\ (A ∪B), a 6= b. If neither A nor B separates
a and b and if A ∩B is connected, then A ∪B does not separate a and b.

We prove the claim as a special case of the following lemma.

Lemma 2.4. Let A1 and A2 be two closed subsets of the extended complex plane
and a, b ∈ C. If neither A1 nor A2 separates a and b and if A1∩A2 is connected,
then A1 ∪A2 does not separate a and b.

Proof. We may assume that the said points are 0 and ∞.

b

b

b

b

b

b

b

b

∞
0

γ1

γ2

A2

A1

V2

V1

F

Figure 2: Constructing a branch of logarithm on a domain in the proof of
Janizewski’s theorem. (Theorem 2.3.)

For i = 1, 2 we may deduce the following:
As the set Ai does not separate the points 0 and ∞, we can find a path γi

connecting these points such that |γi| ∩Ai = ∅. Let us look at the loop γ1 +
←−γ2.

Note that it does not meet the connected set A1 ∩ A2. If A1 ∩ A2 6= ∅, pick
the component of C \ |γ1 +

←−γ2| containing A1 ∩ A2. If A1 ∩ A2 = ∅, pick any
component of the complement of this loop. In either case call the component
F .

We have shown in function theory 2, that if a domain ∅ 6= Ω  C is simply
connected, we can for any a ∈ ∁Ω pick a well-defined branch of the function
z 7→ log(z − a). We have in FT2 also shown that a domain Ω ⊂ C is simply
connected exactly when C \Ω is connected. Thus by these results we can pick a
well-defined branch, fi, of the logarithm on the set C \ |γi|, for the complement
of each of these sets with respect to the extended complex plane is exactly the
path-connected set |γi| which contains the origin. Especially we may, and will,
choose these branches such that they coincide in the set F . (Look at picture 2.)

Removing an open set from a compact set does not effect compactness, so
the sets Ai \F, i = 1, 2 are compact. Now the sets Ai \F and |γi| were compact
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and disjoint, so there exists a strictly positive distance ri = d(Ai \F, |gammai|).
Thus we can find an open neighbourhood Vi of Ai\F (for example B(Ai\F, ri))
such that Vi does not intersect the path γi. The sets A1 \F and A2 \F are also
disjoint compact sets so we may require that the sets Vi are disjoint.

Denote H = V1 ∪ V2 ∪ F . (Look harder at picture 2.) We can define the
function

f : H → C, f(z) =





f1(z), when z ∈ V1

f2(z), when z ∈ V2

f1(z) = f2(z), when z ∈ F

The function f is analytic in the domain H ⊃ A1 ∪ A2 and satisfies for any
z ∈ H the relation exp f(z) = z.

We are now ready to show that the set A1 ∪A2 does not separate the points
0 and∞. Assume the contrary. This would imply, that also the set H separates
these points. This means that the point 0 must lie in a bounded component of
the complement of H.

By imitating We may now construct a path γ whose image lies in H such
that winding number η(γ; 0) of γ with respect to 0 is 1. This construction can
be found from several sources, for example from:

• In [FT2, p. 84] the proof of theorem 5.19 contains this construction.
(The closed sets A and B in the proofs of this and the following source
correspond in our proof to the bounded component of ∁H containing 0, and
the unbounded component of ∁H containing the point ∞, respectively.)

• In [Ah, p. 139] the proof of theorem 14 contains this construction.

• In [Ru, p. 274] the theorem 13.11 implies the existence of such a path.

But this is a contradiction, as

η(γ; 0) =
1

2πi

∫

γ

z−1 dz =
1

2πi

∫

γ

f ′(z)︸ ︷︷ ︸
analytic

dz = 0 6= 1.

Thus the set A1 ∪A2 cannot separate the points 0 and ∞.

With this we can easily prove Janizewski’s theorem.

Proof of Janizewski’s theorem, theorem 2.3. Compact sets of the complex plane
are closed in the extended complex plane, so by applying lemma 2.4 we get our
claim.

From Janizewski’s theorem we can prove the following useful corollary.

Corollary 2.5. The complement of a simple arc is connected (i.e. it does not
separate any points not contained in its image).

Proof. Assume
γ : [0, 1]→ C

is a simple arc. Take any a, b ∈ C \ |γ|. Because the image of the path γ is
compact, we have positive distances d(a, |γ|) > 0 and d(b, |γ|) > 0. Take r to
be the smaller of these two.
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b

b

b

b

γ

a

b

r

Figure 3: The complement of a simple arc is connected.

We can now by compactness of [0, 1] partition the interval [0, 1] into n closed
subintervals

[0, t1], [t1, t2], . . . , [tn−1, 1]

such that each restriction γi := γ|[ti,ti+1] is contained in an open set with diam-
eter less than r. Now each of the restrictions γi is especially contained in a ball
Bi not containing either of the points a or b. As we can connect the points a
and b in the complement of any of these balls Bi, we can also connect them in
a larger set C \ |γi|. This means that none of the sets |γi| separate the points a
and b. (Look at picture 3.)

We can now prove the claim by induction over the indeces of our partition
of the unit interval.
Claim: The simple arc γ1 + . . . + γi does not separate points a and b for any
i = 1, . . . , n.

Base case: As we noted earlier, none of the paths γi separete the said points,
so especially this holds for the path γ1.

The inductive step: Assume that the path

α := γ1 + . . .+ γn

does not separate the points a and b. Now we must have that α∩ γn+1 =
{γn(tn+1)}, for otherwise the path γ would not be injective, contrary to
what we assumed. Now by assumption the path α does not separate points
a and b, and neither does the path γn+1 by the previous notion. Also their
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intersection is just a singleton, which is clearly a connected set. But this
means that by Janizewski’s theorem the union

|α| ∪ |γn+1| = |γ1 + . . .+ γn + γn+1|

does not separate those points and this is exactly what we wanted to show.

Thus the claim holds.

Lemma 2.6. Given a Jordan curve J the boundary of each component of C \J
is exactly J .

Proof. Let A be a connected component of C \ J . We will prove that ∂A = J
“one direction at a time”.

”⊂”: (Note, that for this direction we would only need to know that J is closed.)
Let z0 ∈ ∂A. Because A is open, we must have that z0 /∈ A. On the other
hand the complement of A consists of J and (possibly) the other compo-
nents of C\J . If z0 were to belong to some other component of C\J , then
we would find a neighbourhood of the point z0 contained in this compo-
nent. But then we would get a contradiction, as we would by definition of
boundary find points of the set A within this neighbourhood. The compo-
nents would then have common points an would then necessarily be same.
Thus we must have z0 ∈ J , as we wanted.

”⊃”: Let z0 ∈ J . It suffices to show that z0 ∈ A, so we only need to find points
in A arbitrarily close to z0. Look at picture 4 during the following.

Take a point x ∈ A. Take n ∈ N so large, that

1

n
< min(d(z0, x), d(|J |)),

and denote

Dn =: B
(
z0,

1

n

)
.

Call by J ′ the component of Dn∩J containing the point z0. The mapping
J is a homeomorphism between the sets |J | and S1, so the pre-image of
the set |J ′| under the mapping J is also necessarily an open connected
subset of S1. Thus the complement of this pre-image is homeormorphic
to the closed unit interval and gives rise to a simple arc as a restriction of
the mapping J to this complement in question. Especially the image of
this arc then equals the complement of J ′ in J , J ′′ := J \J ′. By corollary
2.5 this simple arc thus does not separate the points x and z0. As open
components of C \ J ′′ are necessarily path connected by our previous
notion, this means that we can find a curve

γn : [0, 1]→ C \ J ′′ such that γn(0) = x and γn(1) = z0.

This curve connects the points x and z0 in C \ J ′′. Set

t0 = inf {t ∈ [0, 1] | γn(t) ∈ ∂Dn}︸ ︷︷ ︸
=:B

, zn = γn(t0).
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b

bb

b
x

γn

c

z0
b
zn

Dn

b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b

J ′

J ′′

Figure 4: Finding points of a component arbitrarily close to the Jordan curve.

The set B is bounded from below by definition. It is also non-empty, for
we note that the mapping t 7→ d(γn(t), z0) is continuos as a composition
of two continuos functions, and we have that

d(γn(1), z0) = d(z0, z0) = 0 <
1

n
< d(x, z0) = d(γn(0), z0),

because we chose n to be so large that the second inequality holds. Thus
by Bolzano theorem we must have a point t ∈ [0, 1] such that d(γn(t), z0) =
1/n, i.e. γn(t) ∈ ∂Dn.

The point zn is the first point where the path γ meets the sphere ∂Dn.
As the image of the arc γn|[0,t0] intersects neither J

′′ (by definition), nor
J ′ (if it would intersect the set J ′, we would get a contradiction by to the
definition of an infimum by applying the Bolzano theorem to the earlier
function with endpoints 0 and t0), we have that γn|[0,t0] ⊂ C\J . But now
we note that the path γn|[0,t0] has to lie within the component A, for it is
contained in the complement of the curve J , and as a path all its points
must lie in the same path component as x, which is exactly the component
A.

So γn|[0,t0] ⊂ A, and thus zn ∈ A. Now as n →∞, these points converge
towards z0, and we have thus shown that z0 ∈ Ā.

Thus we know that J is the boundary for every component of its complement.
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Remark 2.1. After this point one might want to jump to hasty conclusions
claiming that the JCT clearly follows from the previous lemma, as we have
a curve with clearly just two sides and by the previous lemma all components
must “touch” this two-sided curve at each point. This lemma does play a crucial
role in our proof, but to give some aspects of the nontriviality of the remaining
part of the proof, I would like to note that one can construct6 something called
“Lakes of Wada”, which are three disjoint domains in the plane with a common
boundary. So we need to find a formal way to get our hands on the “two-
sidedness” of J .

What is left to show is the following lemma.

Lemma 2.7. The complement of a Jordan curve has exactly two components.

Proof. We will imitate the proof given in [Di1, p. 256 ] and prove the JCT in
two cases:

Case 1. Assume the image of the Jordan curve contains a line segment.

b b

a−a
b

D+

D−

−r r
b b

Figure 5: Proof of the JCT when the curve contains a linesegment.

6This can be found formally from [Yo], but a description and pictures can be found for
example from Wikipedia.
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Denote the assumed line segment by I. Translations and rotations are
homeomorphisms of the whole plane, so we may assume that I = [−a, a],
where a ∈ R, a > 0.

One easily chects that the set J \int I is compact. Thus we have that there
exists a strictly positive distance d(0, J \ int I). Set r = 1

2d(0, J \ int I)
and denote Dr = B(0, r). Now Dr ∩ J = [−r, r]. Denote

D+ = {z ∈ B(0, r) | Im z > 0} , D− = {z ∈ B(0, r) | Im z < 0} .

Now as 0 ∈ J , we have by Lemma 2.6 that 0 lies in the boundary of every
component of the set C \ J . That means that each of the components
must have common points with either D+ or D−. But as these are both
connected as convex sets and are contained in C \ J , we see that each
component of the set C \ J must contain either D+ or D−.

Thus we have shown that C\J has at most two components. To complete
the proof we only need to show that the set C \ J is not connected.

We will do this by showing that any points x ∈ D+ and y ∈ D− belong to
different components. We will proceed with a counter-assumption followed
by an application of Janiszewski’s theorem (Theorem 2.3).

Assume that the set C \ J is connected. Pick points x ∈ D+, y ∈ D−. As
the set J is compact, we find R > 0 so large that J ⊂ B(0, R). We note
that clearly the set G := ∁Dr ∩B(0, R) does not separate points x and y,
as the set Dr is connected as a convex set. By our counterassumption also
the set J does not separate the points x and y. But now the intersection
of the sets J and G is the complement of the interval ]−r, r[ in J , so it is
a simple arc. Thus by corollary 2.5 it does not separate the points x and
y, and by Janizewski theorem neither does the union G∪ J . But this is a
contradiction, as the complement of this set is just

D+ ∪ D− ∪ ∁B(0, R) ⊃ D+ ∪ D−,

which clearly separates the points x and y.

The antithesis was false, so we see that the set C \ J is not connected.
Combining this with the previous result we see that the set C \ J has
exactly two components.

Case 2. Assume the image of the Jordan curve does not contain a line segment.

Let a, b ∈ J , a 6= b. Denote the line segment
−→
ab in the plane between a

and b by I. As before, we may assume that I = [−a, a], where a ∈ R,
a > 0. By our assumption, there exists at least on interior point, say x0

in I that does not lie on the image of the curve J . (See picture 6.) By
our previous notions we know that the set ∁J is open, and thus x0 lies in
the set (int I) ∩ ∁J which is an open subset of int I with respect to the
topology induced by the plane. Thus there exists a ball in I, which in this
case is an interval, I0 := ]x0 − δ, x0 + δ[ such that I0 ∩ J = ∅.

Let us now find the “largest” interval around x0 such that it is still con-
tained in the complement of the set J . More spesifically, set

α = inf{x ∈ I | ]x, x0] ⊂ ∁J}
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a bb b

b
b

x0

Ĩ

G1

G2

Figure 6: Finding a segment not meeting the Jordan curve.

and in a similar fashion

β = sup{x ∈ I | [x0, x[⊂ ∁J}.

Both α and β are well-defined, for the respective sets are nonempty by
the earlier notion and bounded by ±a.

Now set Ĩ = ]α, β[. Next we wish to divide the curve J into two parts by

using Ĩ so that we can apply the result of Case 1. Note that J \ {α, β}
consists of two simple arcs. Let us call them G1 and G2.

What we do is that we will form two new jordan curves, c1 and c2, (see
picture) such that:

c1 follows first G1 and then goes through Ĩ.

c2 first goes through Ĩ (in a different direction as c1) and then follows
G2.

16



I suggest to look at the picture 7 at this point.

c1

c2

b

b

b

b

Bw

w

Figure 7: Constructing new Jordan curves with a segment.

Let us do this in rigour: Reparametrize7 J : S1 → C such that J(1) =
α, J(−1) = β. Now denote by L1 the affine bijection from [0, π] to [β, α],
by L2 the affine bijection from [π, 2π] to [α, β] and define (in the following
we denote arg(z) =: t)

c1 : S
1 → C, c1(e

it) =

{
J(eit), when t ∈ [0, π]

L2(t), when t ∈ [π, 2π],

c2 : S
1 → C, c2(e

it) =

{
L1(t), when t ∈ [0, π]

J(eit), when t ∈ [π, 2π].

Both c1 and c2 are seen to be Jordan curves, which both contain a line
segment Ĩ. Now we are ready to apply the result from case 1.

Take a point w ∈ |c1| \
−→
αβ. The point w is not contained in the compact

set |c2| and thus there is exists an open ball Bw containing the point w
such that Bw ∩ |c2| = ∅. By the result of case 1, there are exactly two
components of C\|c1|, and by lemma 2.6 both of the components intersect
the ball Bw.

7This can be done, as reparametrization does not effect the continuity of J and the conti-
nuity is the only property of J that we need here.
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Now if we take points w′, w′′ ∈ Bw that are in the same component of
C \ |c1|, they are not (of course) separated by the set |c1|. Neither are
they separated by the set |c2| for they belong to a connected subset of

C \ |c2|, namely the ball Bw. Also by corollary 2.5 the simple arc
−→
αβ that

is the intersection of |c1| and |c2| is connected and thus by Janizewski’s
theorem they are not separated by the set |c1| ∪ |c2|. Especially they are
not separated by the smaller set J ⊂ |c1|∪|c2|. This means that the points
w′ and w′′ belong to the same connected component of C \ J .

The conclusion is, that by lemma 2.6 every component of C \J has points
in Bw, and now by Janiszewski’s theorem every pair of points in Bw that
is not separated by the set |c1| is also not separated by the set J . Thus
the set C \ J must have at most as many components as the set C \ |c1|.
But by the result of case 1 the set C\J has exactly two components. Thus
the set C \ J has at most two components.

What is left to show is that the set C \ J is not connected. By the results
of case 1, we know that there exists two points w′, w′′ ∈ Bw such that the
set |c1| separates them. We wish to show that they are separated by the
set J as well.

Assume that the points w′ and w′′ are not separated by the set J . As
before, we would have that they are not separeted by |c2| (again, they
lie in a connected set Bw ⊂ ∁|c2|) nor by the simple arc which is the
intersection of |c2| and J . Then by Janizewski’s theorem they are not
separated by the set J ∪ |c2|. But this gives a contradiction, as then they
would not be separated by |c1| ⊂ J ∪ |c2|.

We conclude that the set C \ J has exactly two components.

The JCT is now proven with elementary methods. Let us move on to the
proof that involves the Brouwer fixed point theorem.
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2.2 Proof via Brouwer’s fixed point theorem

This approach to the proof is from the lecture notes [GC], which in turn was
based on the article [Ma]. We will use in this section terminology of linear
algebra rather than complex analysis, because the proofs are in nature more
elementary plane geometry than complex analysis. An exception will be the
following proof of Brouwer fixed point theorem, for in the proof we well need
winding numbers which are most naturally expressed via complex notation.

Theorem 2.8. (Brouwer fixed-point theorem) Given a continuous function f
from the closed unit disk D to itself, there exists a point z0 ∈ D such that
f(z0) = z0. Such a point is called a fixed point of the function f and is not
unique in general.

Proof. Let us make a counter-assumption that for some continuous function
f : D→ D there exists no fixed point. Now we can define a continuous mapping

g : D→ S1,

which has the property g|S1 = id.
Geometrically this function is constructed as follows: For each z ∈ D consider

the line segment starting from f(z) and going through z. Find the first point
at which this line intersects the unit sphere and call this point g(z).

Formally we can define

g(z) = z + a
z − f(z)

|z − f(z)|
, where a = −Re bz ±

√
(Re bz)

2
+ 1− |z|2

and b =
z − f(z)

|z − f(z)|
.

From this formal definition we see the function g to be continuos as a composi-
tion of continuous functions.

Please note that both of these definitions of g require the fact that f(z) 6= z
for all z ∈ D.

Now let us look at the loop

γ : [0, 1]→ S1, γ(t) = eit.

We note that as g|S1 = id, the path formed as a pre-image of γ is also a path
defined by z 7→ eit, but in D. As the closed ball is simply connected, there exists
a homotopy

H : [0, 1]× [0, 1]→ D

that deforms γ to a constant path in D. Now the mapping g◦H gives a homotopy
in S1 that also deforms γ into a constant path γc in S1.

This is a contradiction, since we know by for example Function Theory II,
that the winding number η(γ; 0) of the path γ in S1 is 1, but as the integral
of an analytic function over continuous paths is a homotopy invariant, we must
have

η(γ; 0) =
1

2πi

∫

γ

z−1 dz =
1

2πi

∫

γc

z−1 dz = 0 6= 1.

Thus every continuous function from the unit disc to itself must have a fixed
point.
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We next prove a corollary to the Brouwer fixed point theorem that will be
used extensively throughout the proof of the JCT.

Corollary 2.9. Let I = [−1, 1] and assume that

h : I → I2, h(t) = (h1(t), h2(t)) and

v : I → I2, v(t) = (v1(t), v2(t))

are two paths such that8

h1(−1) = −1, h1(1) = 1, v2(−1) = −1 and v2(1) = 1.

Then for some t, s ∈ I we have that h(t) = v(s).

Proof. Let us first note, that as the unit rectangle is homeomorphic to the unit
disk, the Brouwer fixed point theorem holds also for the unit rectangle, i.e.
every continuous map

f : I2 → I2

has a fixed point.
Let us make a counterassumption; h(t) 6= v(s) for all pairs of points t, s ∈ I.

Define a ’maximum of distances’:

N(s, t) = max (|v1(t)− h1(s)|, |v2(t)− h2(s)|)

and a continuous function

f : I2 → I2, f(s, t) =
( v1(t)− h1(s)

N(s, t)︸ ︷︷ ︸
=:f1(s,t)

,
h2(s)− v2(t)

N(s, t)︸ ︷︷ ︸
=:f1(s,t)

)
.

By the Brouwer fixed point theorem there exists a fixed point, say (s0, t0), of
this function.

Now by definition we have that f [I2] ⊂ ∂I2.
Thus we must have either that s0 = ±1 or t0 = ±1. All of these cases create

a contradiction in a very similar fashion. We shall go through the case t0 = 1.
If this were true, we would have that (s0, 1) = f(s0, 1), so especially the second
coordinates would agree. So we would have that

1 = f2(s0, 1) =
h2(s0)− v2(1)

N(s0, 1)
≤

1− v2(1)

N(s0, 1)
=

1− 1

N(s0, 1)
= 0

which is a contradiction.

We will continue by proving a modified version of lemma 2.6. This modified
version states that the image of the Jordan curve is the boundary for each of the
components of its complement given the assumption that there exists at least
two components in the said complement.

Main motivation of this is to keep the proofs as self-contained and compact
as possible. More specifically; in the elementary proof we needed Janizewski’s

8(Geometrically this condition means that the path h starts from the bottom of the square
and ends in the top, and the path v starts from the left side of the square and ends in the
right.)
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theorem (theorem 2.3), with which it was quite fluent to prove the lemma. In
this proof we need only a weaker version, and the work to go through all the
lemmas in the previous section just to get this simple result would be kind of
an overkill. Especially when you consider how nicely this alternate proof fits to
our ’Brouwerian’ framework.

“Never use a cannon to kill a fly.”
–Confucius

Before the actual proof, however, we need to prove the following lemma, which
is (in its full generality) known as the Tietze mapping theorem. It is proven
here in the special case of the plane. Statement and proof of the general case
can be found for example from [Wi] (or from [Vä], from which the prove here is
mimiced, if you can read finnish).

Lemma 2.10. Let A ⊂ R2 be closed and f : A→ [a, b] continuous. Then there
exists a continuous mapping g : R2 → [a, b] such that g|A = F .

Proof. First of all, note that if we take any two closed disjoint subsets A1 and
A2 of the plane, the function

h : R2 → [0, 1], h(x) =
d(x,A1)

d(x,A1) + d(x,A2)

is well defined (because the sets were closed, no point can have a zero dis-
tance to both of them without belonging to both of them) and continuous as
a composition of the continuous distance-mapping and a rational function with
a non-vanishing denumerator. Also we see that h[A1] = {0}, and h[A2] = {1}.
From this we see (e.g. by concidering partially linear transformations) that we
can for any two closed disjoint subsets of the plane find a function that maps
the plane continuously to any given closed interval of the real line such that the
closed sets are mapped to two given distinct points within this interval.

Now let f : A→ [a, b] be continuous. We may assume by studying an affine
transformation that a = −1, b = 1. The sets A1 := f−1[−1,− 1

3 ] and A2 :=
f−1[ 13 , 1] are closed as pre-images of closed sets with respect to a closed mapping.
Thus by our earlier notion we find a continuous function h1 : R2 → [− 1

3 ,
1
3 ] such

that h1[A1] = {−
1
3}, and h1[A2] = {

1
3}. Now we note, that actually for every

x ∈ A we have

|f(x)− h1(x)| ≤
2

3
.

Now if we re-apply this procedure to the function (f − h1) : A →
[
− 2

3 ,
2
3

]
we

find a continuous function h1 : R2 → [−
(
2
3

)2
,
(
2
3

)2
] such that

|f(x)− h1(x)− h2(x)| ≤

(
2

3

)2

for all x ∈ A. By induction, we thus find a sequence (hn) of continuous functions
defined on the whole plane such that

|f(x)−
k∑

n=1

hn(x)| ≤

(
2

3

)k
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for all k ∈ N, x ∈ A. Also we see that

∑

n∈N

|hn| ≤
∑

n∈N

(
1

3

)n

<∞.

Combining these two facts, we actually see that the function

g : R2 → [−1, 1], g(x) =

∞∑

n=1

hn(x)

exists, is continuous and equals the function f in the set A. This proves the
claim.

Now we are ready to continue.

Theorem 2.11. If the complement of a given a Jordan curve J is not connected,
then the boundary of each component of R2 \ J is exactly J .

We will prove this theorem as an corollary of the following lemma, which
was also proven in the elementary proof. Again we shall prove it with tools
more fitted to the Brouwerian framework.

Lemma 2.12. A simple arc cannot separate any pair of points in the comple-
ment of its image.

Proof. We will prove the claim by creating a contradiction to a counter-assumption
with the Brouwer fixed point theorem, i.e. by constructing a continuous func-
tion from the closed unit disk to itself without a fixed point. So let us assume
the contrary, i.e. that the complement of a simple arc γ is not connected.

One can easily check (for example, by modifying the proof of lemma 2.2)
that the set R2 \ γ has exactly one unbounded component. As we assumed that
there exists at least two components, there must especially exist a bounded
component A of the set R2 \ γ. Let x0 ∈ A.

Choose r > 0 so large that γ ⊂ B(x0, r). This is possible as the set γ is
bounded as a compact set. The boundary S := ∂B(x0, r) is now contained in
the unbounded component of the set R2 \ γ.

Now by applying lemma 2.10 to the mapping

id ◦γ−1 : |γ| → [0, 1]

we see that the identity mapping id : |γ| → |γ| can be extended to a continuous
mapping s : B(x0, r)→ |γ|.

Let us now define q : B(x0, r)→ B(x0, r) \ {x0} by setting

q(z) =

{
s(z), when z ∈ A

z, when z ∈ ∁A ∩ B(x0, r).

The mapping is well defined and continuous, as both mappings r and id are,
and their respective domains only meet in the set A ∩ ∁A, which is contained
in the simple arc in which the mapping s equals the identity. Especially note
that q|S = id. Also now the point x0 does not belong to the image set of the
mapping, because as we chose it from the set A and thus it is mapped via the

22



mapping s, which has as its image the set |γ| which does not contain the point
x0.

To simplify a definition, we assume that x0 = 0. Let

p : B(0, r) \ {0} → S, p(z) =
z

|z|
.

Now we actually see, that the composition of p and q form a continuos mapping
from the closed unit disk to the unit sphere that keeps the unit circle fixed. This
was seed to be impossible in the proof of the Brouwer fixed point theorem, so
at this point one could redo parts of that proof and create a contradiction. But
as we have the Brouwer fixed point theorem in our hands, we can save effort by
applying it here.

So denote still
t : S → S, t(z) = −z.

and note that the mapping

t ◦ p ◦ q : B(0, r)→ S ⊂ B(0, r)

contradicts the Brouwer fixed point theorem, for the image set is contained in
S, so any fixed point must lie here. But on the other hand we see that the
mappings p and q restricted to the boundary are just identity mappings, so for
any z ∈ S we have that

(t ◦ p ◦ q)(z) = t(z) = −z 6= z.

We are now ready to prove our claim that the Jordan curve is the boundary
of all the components of its complement, if there exists at least two of such
components.

Proof of lemma 2.11. Let A be a connected component of R2 \J . We will prove
that ∂A = J “one direction at a time”.

”⊂”: This follows from basic topology and is done in detail earlier in the proof
of lemma 2.6

”⊃”: Assume the contrary, that is, that ∂A  J . Let us pick a point a ∈ J \∂A.
As the set ∂A is a closed subset of a compact set J , it is necessarily
compact. This means that there exists a neighbourhood U of the point
a /∈ A such that U ∩A = ∅. So especially there exists a simple arc γ (one
can take for example the component of J∩∁U containing ∂A with induced
parametrization from the curve J) that contains the set ∂A.

But now our previous theorem states that the simple curve γ cannot sep-
arate any two points. This means, that if we pick two points, x ∈ A, and
y in some other component of C \ J , we can take a path α connecting
these two in ∁ (∂A). But our assumption implies that the Jordan curve J
separates these two points, so the path α must cross the set J \ γ. This is
impossible, as then the first crossing point would belong to the boundary
of A, but the crossing points belong to a set disjoint from ∂A.
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Thus we know that if R2 \ J is not connected, then J is the boundary for
every component of its complement.

(If you have not read the proof by elementary means, remark 2.1 might turn
out to be a good thing to read at this point for motivation.)

Now all that is left to prove after our lemmas is that the complement of the
Jordan curve has exactly one bounded component.

Proof of the JCT. We begin the proof by fixing some points on our curve. We
will especially find a nice interior point of the complement of the image of our
Jordan curve. We will apply our corollary 2.9 several times.

b ba1 a2

b1

b2
b

b

b

b

b

b

J2

J1

m

j

n

k

bx

Figure 8: Fixing of points on the Jordan curve.

As the set J is compact, we can find points a1 and a2 in J such that
d(a1, a2) = d(J). We may again assume, that a1 = −1, a2 = 1. Now the
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image of the curve is contained in the rectangle [−1, 1] × [−2, 2] which we de-
note by R. Set b1 := (0, 2) and b2 := (0,−2) (i.e. the midpoints of the top and
bottom of the rectangle). Note that R∩J = {a1, a2}, for otherwise the distance
would not be maximal.

The segment
−−→
b1b2 meets the Jordan curve J by our lemma 2.9 (You can

apply the lemma to any segment of J between the points a1 and a2). Pick

m ∈ J ∩
−−→
b1b2 with the largest second coordinate (this is possible, because the

intersection is a compact set).
Removing the points a1 and a2 from the Jordan curve divides it to two

simple arcs). Let us denote the one that goes through the point m as J1 and
the other as J2.

Pick (again by lemma 2.9 and compactness) element n ∈ J1 ∩
−−→
b1b2 with the

smallest second coordinate.
Now the paths J2 and

−→
nb2 intersect, for otherwise the paths J2 and

−→
b2n +

ñm+
−−→
mb1 would violate our lemma 2.9. Pick from the set J2∩

−→
nb2 an element k

with the largest possible second coordinate and an element j with the smallest
possible second coordinate.

Take x to be the middlepoint of the segment
−→
nk. By definition of the points

n and k we have that x ∈ R2 \ J .

Now we have our points fixed, so we can begin the proof. We want to show
that firstly the point x lies in a bounded component of the complement of our
Jordan curve and secondly that no other bounded component exists. Both these
claims we achieve by making a counterassumption and creating a contradiction
by constructing suitable curves using the points we have fixed above and again
applying our corollary 2.9 repeatedly.

1:st claim: The component of R2 \ J containing the point x is bounded.

Let us make a counterassumption, that the aforementioned component is
not bounded. This means that we have a path γ in R2 \ J that connects
the point x and a point y outside our rectangle R. Denote

α = γ|[0,t0], where t0 = inf{t ∈ [0, 1] | γ(t) ∈ ∂R}.

Now α(t0) is the first point where the path α meets the boundary of our
rectangle.

As we cannot have that Imα(t0) = 0, for then the path α would cross
either a1 or a2, we are left with two possibilities.

If Imα(t0) < 0, then the paths J2 and

−−→
b1m+ m̃n+−→nx+ α+ α̃(t0)b2,

where α̃(t0)b2 is the shortest path along the set ∂R between the points
α(t0) and b2, create a contradiction with lemma 2.9.

If, on the other hand, Imα(t0) > 0, then the paths J1 and

−→
b2x+ α+ α̃(t0)b1,

where α̃(t0)b1 is the shortest path along the set ∂R between the points
α(t0) and b1, create a contradiction with lemma 2.9.

Thus we must have that the point x lies in a bounded component of R2\J .
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2:nd claim: The component of R2 \ J containing the point x is the only
bounded component of R2 \ J .

If we had another bounded component, say G in R2 \ J , then we see that
the path

β =
−−→
b1m+ m̃n+

−→
nk + k̃j +

−→
jb2

does not lie in this component, because

• The segments
−−→
b1m and

−→
jb2 are contained in the union of J and the

unbounded component of its complement.

• The simple arcs m̃n and k̃j are contained in J .

• The segment
−→
nk is contained in the union of J and the component

containing the point x.

Note that the set G cannot contain neither of the points a1 or a2, and
the image of the path β is a compact set, so we find neighbourhoods Ui

of ai, such that Ui ∩ β = ∅, where i = 1, 2. But by the lemma 2.11, we
must have that ai ∈ ∂G. Thus we especially find points xi ∈ Ui such that
xi ∈ G, i = 1, 2. As the component G is necessarily path connected, we
find a path α in G which connects the points x1 and x2. Now the paths
β and −−→a1x1 + α+−−→x2a2 bring a contradiction with the lemma 2.9.

Thus there exists exactly on bounded component of R2\J , so the JCT holds.
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3 Final notions

As promised, we will now look at some other methods of proving the JCT and
give the appropriate references. I would also like to note that [DT] contains
history, references and a proof of the JCT. In all fairness, I have not read
all the given references thoroughly, so my summaries can (and propably do)
have shortcomings. I apologize to any authors whom I might have miscited or
-summarized.

The proof relaying on Brouwer fixed point theorem used only methods of
’planar topology’ after the fixed point theorem was proven. Thus in order to
construct a proof of the JCT with set prequisites, one can (for example) use a
proof of the fixed point theorem that uses some other methods. In this essay we
proved the Brouwer fixed point theorem via methods of function theory. The
Brouwer fixed point method can be proved in various different ways. I list here
a few of them.

• Proof using basic algebraic topology can be found from [Hat].

• Proof using very basic game theory, namely whether a winning strategy
exists in the game hex can be found from [Ga] (This proof can be followed
and understood by highschoolers if the teacher is up to the task.)

• The proof used in this essay basically from [Ma].

As mentioned, algebraic topology would have been in some details of the
proofs a very natural tool. The whole theorem can be in fact be seen as a
special case of a theorem called the Alexander duality. In his paper [Do] A.
Dold guides anyone familiar with basic homology theory throught the proof in
the case of subsets of Rn.

There are also proofs that I would classify as ’other proofs’.

• In [Hal] T. Hales defends and represents the original proof of the JCT
published by C. Jordan.

• In [Hal2] T. Hales talks about formal proofs in general and especially of
the JCT.

• In [Na] Louis Narens gives a nonstandard proof of the JCT. According to
[Hal] this is somewhat similar to Jordans original proof.

• In [BJMR] a constructive proof is given. (Constructive in the sense that
existence is not enough, the presentation is also essential.)

As mentioned, the stronger Jordan-Schöenflies -theorem can be proved from
the JCT. In [So] this is done by improving and applying the Carathodory theo-
rem concerning continuation of conformal maps up to boundary. In [Si] Laurent
Siebenmann proves the Jordan-Schöenflies theorem with quite elementary meth-
ods, although some algebraic topology is used.
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